首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   44篇
综合类   9篇
水产渔业   1篇
畜牧兽医   231篇
植物保护   14篇
  2023年   1篇
  2021年   1篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   14篇
  2016年   7篇
  2015年   11篇
  2014年   11篇
  2013年   23篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   13篇
  2006年   12篇
  2005年   17篇
  2004年   13篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
排序方式: 共有255条查询结果,搜索用时 312 毫秒
31.
32.
Enrofloxacin and marbofloxacin were administered to six healthy dogs in separate crossover experiments as a single oral dose (5 mg/kg) and as a constant rate IV infusion (1.24 and 0.12 mg/h.kg, respectively) following a loading dose (4.47 and 2 mg/kg, respectively) to achieve a steady-state concentration of approximately 1 microg/mL for 8 h. Interstitial fluid (ISF) was collected with an in vivo ultrafiltration device at the same time period as plasma to measure protein unbound drug concentrations at the tissue site and assess the dynamics of drug distribution. Plasma and ISF were analyzed for enrofloxacin, its active metabolite ciprofloxacin, and for marbofloxacin by high performance liquid chromatography (HPLC). Lipophilicity and protein binding of enrofloxacin were higher than for marbofloxacin and ciprofloxacin. Compared to enrofloxacin, marbofloxacin had a longer half-life, higher Cmax, and larger AUC(0-infinity) in plasma and ISF after oral administration. Establishing steady state allowed an assessment of the dynamics of drug concentrations between plasma and ISF. The ISF and plasma-unbound concentrations were similar during the steady-state period despite differences in lipophilicity and pharmacokinetic parameters of the drugs.  相似文献   
33.
The purpose of this study was to determine the pharmacokinetics and tissue fluid distribution of cephalexin in the adult horse following oral and i.v. administration. Cephalexin hydrate (10 mg/kg) was administered to horses i.v. and plasma samples were collected. Following a washout period, cephalexin (30 mg/kg) was administered intragastrically. Plasma, interstitial fluid (ISF) aqueous humor, and urine samples were collected. All samples were analyzed by high-pressure liquid chromatography (HPLC). Following i.v. administration, cephalexin had a plasma half-life (t(1/2)) of 2.02 h and volume of distribution [V(d(ss))] of 0.25 L/kg. Following oral administration, the average maximum plasma concentration (C(max)) was 3.47 mug/mL and an apparent half-life (t(1/2)) of 1.64 h. Bioavailability was approximately 5.0%. The AUC(ISF):AUC(plasma) ratio was 80.55% which corresponded to the percentage protein-unbound drug in the plasma (77.07%). The t(1/2) in the ISF was 2.49 h. Cephalexin was not detected in the aqueous humor. The octanol:water partition coefficient was 0.076 +/- 0.025. Cephalexin was concentrated in the urine with an average concentration of 47.59 microg/mL. No adverse events were noted during this study. This study showed that cephalexin at a dose of 30 mg/kg administered orally at 8 h dosage intervals in horses can produce plasma and interstitial fluid drug concentrations that are in a range recommended to treat susceptible gram-positive bacteria (MIC < or = 0.5 microg/mL). Because of the low oral bioavailability of cephalexin in the horse, the effect of chronic dosing on the normal intestinal bacterial flora requires further investigation.  相似文献   
34.
Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.  相似文献   
35.
Gastrogard, an oral formulation of omeprazole, was given to six llamas at a dose of 4 mg/kg once a day for 6 days. Plasma samples were collected at 0, 15, 30, 45, and 60 min and 2, 3, 4, 6, 8, 12, and 24 h on days 1 and 6. Plasma omeprazole concentrations were measured by high-pressure liquid chromatography with ultraviolet detection. Pharmacokinetic parameters calculated included the area under the curve (AUC(0-infinity)), peak plasma concentration (Cmax), time of peak plasma concentration (Tmax), and terminal half-life (t(1/2)). On day 6, plasma omeprazole concentrations reached a Cmax of 0.12 microg/mL at a Tmax of 45 min. The t(1/2) of omeprazole was 2.3 h and the AUC(0-infinity) was 0.38 h x microg/mL. Plasma concentrations remained above the minimum concentration for inhibition of gastric acid secretion projected from other studies on day 6 in all the llamas for approximately 6 h. However, the AUC(0-infinity) was below the concentrations associated with clinical efficacy. It was not possible to measure oral systemic bioavailability because there was no i.v. data collected from these animals. However, using data published on the i.v. pharmacokinetics of omeprazole in llamas, oral absorption was estimated to be only 2.95%. Due to low absorption the oral dose was increased to 8 and 12 mg/kg and studies were repeated. There were no significant differences in Cmax, Tmax, or AUC(0-infinity) for either of the increased doses. These results indicate that after 6 days of treatment with doses up to 12 mg/kg, oral omeprazole produced plasma drug concentrations which are not likely to be associated with clinical efficacy in camelids.  相似文献   
36.
The pharmacokinetics of enalapril (0.5 mg/kg i.v.) and the pharmacodynamics of enalapril (0.5 mg/kg PO) in 5 mares were investigated. After single i.v. dosing, concentrations of enalapril and enalaprilat, its active metabolite, were measured. Two weeks later, enalapril was administered by nasogastric tube. Potassium, creatinine, blood urea nitrogen (BUN), enalapril, and enalaprilat concentrations and angiotensin converting enzyme (ACE) activity were measured in serum. In addition, heart rate, blood pressure, digital venous blood gases, and lactate were measured. Two weeks later, enalapril was again administered by nasogastric tube. To mimic activation of the renin-angiotensin-aldosterone system, angiotensin I (0.5 microg/kg) was administered at fixed intervals, followed by blood-pressure and heart-rate measurement. The elimination half lives of enalapril and enalaprilat were 0.59 and 1.25 hours, respectively, after i.v. administration. After PO administration, enalapril and enalaprilat were not detectable in serum. There was a tendency (P = .0625) toward a decrease in ACE activity 45-120 minutes after enalapril administration, but ACE activity suppression was never > 16%. There was a tendency (P = .0625) toward a decrease in mean arterial pressure (MAP) 6-8 hours after enalapril administration. Serum concentrations of potassium, creatinine, and BUN and digital venous blood gases and lactate concentrations did not change. In response to angiotensin I, there was a tendency (P = .0625) toward a decrease in the MAP response 4-24 hours after enalapril administration. Single-dose enalapril at 0.5 mg/kg PO did not demonstrate significant availability, pharmacodynamic effect, or substantial suppression of ACE activity.  相似文献   
37.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin in neonatal kittens and compare the pharmacokinetics of enrofloxacin in young and adult cats. ANIMALS: 7 adult cats and 111 kittens (2 to 8 weeks old). PROCEDURE: A single dose of 5 mg of enrofloxacin/kg was administered to adults (i.v.) and kittens (i.v., s.c., or p.o.). Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined. RESULTS: The half-life of enrofloxacin administered i.v. in 2-, 6-, and 8-week-old kittens was significantly shorter and its elimination rate significantly greater than that detected in adults. The apparent volumes of distribution were lower at 2 to 4 weeks and greater at 6 to 8 weeks. This resulted in lower peak plasma concentration (Cmax) at 6 to 8 weeks; however, initial plasma concentration was within the therapeutic range after i.v. administration at all ages. Compared with i.v. administration, s.c. injection of enrofloxacin in 2-week-old kittens resulted in similar Cmax, half-life, clearance, and area under the curve values. Enrofloxacin administered via s.c. injection was well absorbed in 6- and 8-week-old kittens, but greater clearance and apparent volume of distribution resulted in lower plasma concentrations. Oral administration of enrofloxacin resulted in poor bioavailability. CONCLUSIONS AND CLINICAL RELEVANCE: In neonatal kittens, i.v. and s.c. administration of enrofloxacin provided an effective route of administration. Oral administration of enrofloxacin in kittens did not result in therapeutic drug concentrations. Doses may need to be increased to achieve therapeutic drug concentrations in 6- to 8-week-old kittens.  相似文献   
38.
Tramadol is an analgesic and antitussive agent that is metabolized to O-desmethyltramadol (M1), which is also active. Tramadol and M1 exert their mode of action through complex interactions between opiate, adrenergic, and serotonin receptors. The pharmacokinetics of tramadol and M1 were examined following intravenous and oral tramadol administration to six healthy dogs, as well as intravenous M1 to three healthy dogs. The calculated parameters for half-life, volume of distribution, and total body clearance were 0.80 +/- 0.12 h, 3.79 +/- 0.93 L/kg, and 54.63 +/- 8.19 mL/kg/min following 4.4 mg/kg tramadol HCl administered intravenously. The systemic availability was 65 +/- 38% and half-life 1.71 +/- 0.12 h following tramadol 11 mg/kg p.o. M1 had a half-life of 1.69 +/- 0.45 and 2.18 +/- 0.55 h following intravenous and oral administration of tramadol. Following intravenous M1 administration the half-life, volume of distribution, and clearance of M1 were 0.94 +/- 0.09 h, 2.80 +/- 0.15 L/kg, and 34.93 +/- 5.53 mL/kg/min respectively. Simulated oral dosing regimens at 5 mg/kg every 6 h and 2.5 mg/kg every 4 h predict tramadol and M1 plasma concentrations consistent with analgesia in humans; however, studies are needed to establish the safety and efficacy of these doses.  相似文献   
39.
The purpose of this study was to examine the allometric analysis of ciprofloxacin and enrofloxacin using pharmacokinetic data from the literature. The pharmacokinetic parameters used were half-life, clearance and volume of distribution. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula Y = aW(b), where Y is half-life, clearance or volume of distribution, W the body weight and a is an allometric coefficient (intercept) that is constant for a given drug. The exponential term b is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. A total of 21 different species of animals were studied. Results of the allometric analyses indicated similarity between clearance and volume of distribution as they related to body weight for both drugs. Results of the current analyses indicate it is possible to use allometry to predict pharmacokinetic variables of enrofloxacin or ciprofloxacin based on body size of species. This could provide information on appropriate doses of ciprofloxacin and enrofloxacin for all species.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号